

The rate of a reaction depends on the frequency of the collisions between the reacting particles. The rate therefore depends on the concentration of the reactants.

Reaction Order

Example 1

 $NO + O_3 \rightarrow NO_2 + O_2$

This reaction occurs in one step. Its rate depends on the frequency of collisions between NO and O_3 and is therefore proportional to the concentration of NO and O_3 .

```
rate \propto [NO][O<sub>3</sub>]
```

 \Rightarrow rate = k [NO][O₃] where k = rate constant

 \Rightarrow rate = k [NO]¹[O₃]¹ where the indices (1) are known as the '**orders**'

This reaction is first order with respect to NO and first order with respect to O_3 .

The overall order of the reaction is the sum of the indices. The above reaction is therefore second order (1+1).

Example 2

The reaction in example 1 occurred in one step.

Most reactions, however, occur in a series of steps e.g.

 $H_2O_2 + 2HI -> 2H_2O + I_2$

Experiments show that this reaction occurs in two steps:

Step 1	:	H ₂ O ₂	+	HI	->	H ₂ O	+	HOI	(slow)
Step 2	2:	HOI	+	HI	->	H ₂ O	+	I_2	(fast)

Step 2 cannot occur until the HOI from step 1 becomes available. The slow step therefore controls the rate of the whole reaction and is known as the **rate determining step**. The rate of the overall reaction is therefore the rate of step 1:

rate = $k [H_2O_2][HI]$

The following experimental results confirm the above rate equation:

Exp.	Initial $[H_2O_2]$ mol 1 ⁻¹	Initial [HI] mol l ⁻¹	Initial rate of formation of $\rm I_2$ mol 1-1 s-1
1	4 x 10 ⁻⁵	2 x 10 ⁻⁵	1.4 x 10 ⁻¹⁰
2	8 x 10 ⁻⁵	2 x 10 ⁻⁵	2.8 x 10 ⁻¹⁰
3	4 x 10 ⁻⁵	4 x 10 ⁻⁵	2.8 x 10 ⁻¹⁰

Compare Exps.1 and 2:

If we double $[H_2O_2]$ the rate is also doubled.

Compare Exps.1 and 3:

If we double [HI] the rate is also doubled.

i.e. rate = $k [H_2O_2][HI]$

Problem

Find k for the above reaction.

Using the results from Exp.1,

$$k = \frac{\text{rate}}{[H_2O_2][HI]}$$

$$= \frac{1.4 \times 10^{-10}}{[4 \times 10^{-5}][2 \times 10^{-5}]} \qquad \frac{\{\text{mol } 1^{-1} \text{ s}^{-1}\}}{\{\text{mol } 1^{-1}\}\{\text{mol } 1^{-1}\}}$$

$$= 0.175 \text{ mol}^{-1} 1 \text{ s}^{-1}$$

Example 3

2HI

+ I₂

Experiment	Initial [HI] mol l ⁻¹	Initial rate of formation of $\rm H_2$ mol 1-1 s^-1
1	1 x 10 ⁻⁴	4.5 x 10 ⁻¹⁰
2	2 x 10 ⁻⁴	18.0 x 10 ⁻¹⁰
3	3 x 10 ⁻⁴	40.5 x 10 ⁻¹⁰

If we double [HI] the rate increases four times.

-> H₂

If we triple [HI] the rate increases nine times.

i.e. rate = $k [HI]^2$

This reaction therefore occurs in one step. It is second order with respect to HI and second order overall.

Problem

Find k for the above reaction.

The reaction:

 $(CH_3)_3CBr + OH^- -> (CH_3)_3COH + Br^$ is found, by experiment, to follow the rate equation: rate = k[(CH_2)_2CBr]

3

The rate does **NOT** depend on the concentration of OH- ! The reason becomes clear when we consider the mechanism:

Step 1 is the rate determining step. It does not involve the hydroxide ion. The rate of step 1,

rate = $k[(CH_3)_3CBr]$,

is therefore the rate of the overall reaction.

N.B. Experimentally determined rate equations can provide evidence for a proposed reaction mechanism but cannot provide proof as other possible reaction mechanisms may also give the same rate equation.