ADVANCED HIGHER

1

Volumetric Analysis

The Milli-Mole Method

					=	= xv	milli	l-moles
\Rightarrow	v	cm ³	хM	solution	contains	xv/1000	mole	solute
\Rightarrow	1	cm ³	хM	solution	contains	x/1000	mole	solute
	1000	cm ³	хM	solution	contains	x	mole	solute

Hence :-

No.of milli-moles = volume x molarity

Practice Problem

55.01 cm³ 0.2M Sodium hydroxide were required to neutralise 25.00 cm³ Nitric acid. Calculate the molarity of the Nitric acid. Answer : No. of m.mols NaOH = 55.01×0.2 = 11 m.mols $NaOH + HNO_3 -> NaNO_3 + H_2O$ From the above equation : 1 mol NaOH combines with 1 mol HNO3 11.0 m.mol NaOH combine with 11.0 m. mol HNO₃ => no. of m.mols HNO_3 in 25.00 cm³ must be 11.0 m.mols => => molarity = <u>no. of m.mols</u> volume $\frac{11}{25}$ = = 0.44 mol 1⁻¹

ADVANCED HIGHER

2

Preparing a Standard Solution

Our first experiment will be to find the exact molarity of a solution of Sodium hydroxide. To do this, we need to titrate the Sodium hydroxide with a solution of acid of exact concentration - a primary standard.

We will use Oxalic acid $C_2H_2O_4$ for the following reasons:

* It is highly pure

* It is stable

- * It is soluble in water
- * It is a solid and can therefore be weighed accurately
- * It has a high formula mass (126) Weighing small masses is innaccurate.

Method:

We need to prepare 250 cm^3 of Oxalic acid solution of approximate molarity 0.05 mol 1⁻¹.

1. Calculate the mass of Oxalic acid required.

	No. o	f m.moles	= =	250 x 0.05 12.5 m.moles
=>	No. o	f moles	=	0.0125 moles
=>	Mass		=	126 x 0.0125 <u>1.575g</u>

- 2. Weigh out, in a weighing bottle, approximately 1.575g of Oxalic acid to an accuracy of 4 decimal places e.g. 1.5438g.
- 3. Transfer the Oxalic acid crystals to a 250 cm^3 volumetric flask and make up to 250 cm^3 with water.
- Calculate the molarity of the primary standard.
 Say we weighed out 1.5438g of Oxalic acid:

	No. of moles of Oxalic acid in 250 ${ m cm}^3$	$= \frac{1.5438}{126}$
=>	No. of moles of Oxalic acid in 1000 \mbox{cm}^3	$= \frac{1.5438 \times 4}{126}$
		= 0.0490 mol
=>	Molarity	= 0.0490 mol l ⁻¹

Volgrav

5. Titrate the 0.0490 mol l⁻¹ Oxalic acid solution from a burette into 25 cm3 of the Sodium hydroxide solution containing a few drops of Phenolphthalein indicator (pink to colourless at the end point).

Calculation of results

Say 22.65 cm³ 0.0490 mol 1⁻¹ Oxalic acid are required.

2 Na	.OH +	$C_2H_2O_4$	->	$\mathrm{Na}_{2}\mathrm{C}_{2}\mathrm{O}_{4}$	+	2 H ₂ O
	No. of	m.mols (Oxalic	acid		22.65 x 0.0490 1.10985 m.mols
=>	No. of	m.mols M	NaOH		=	2.2197 m.mols
=>	Molarit	cy of NaC	ЭН		=	no.of m.mols volume
					=	$\frac{2.2197}{25.00}$
					=	0.0888 mol_l-1

A solution of accurately known concentration, like the 0.0888 mol 1^{-1} solution of Sodium hydroxide, is known as a <u>standard solution</u>.

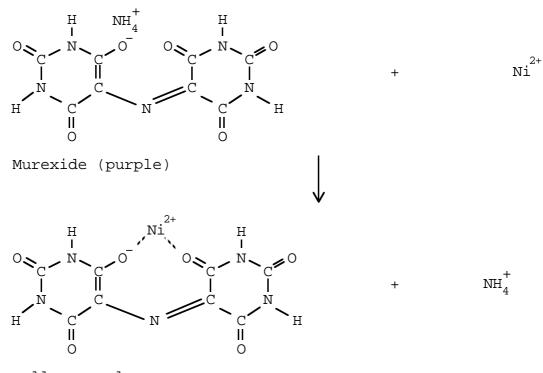
Redox Titration

Object : To find the molarity of a Sodium sulphite solution by titration with 0.02 mol 1⁻¹ Potassium tetraoxymanganese(VII)

Method :

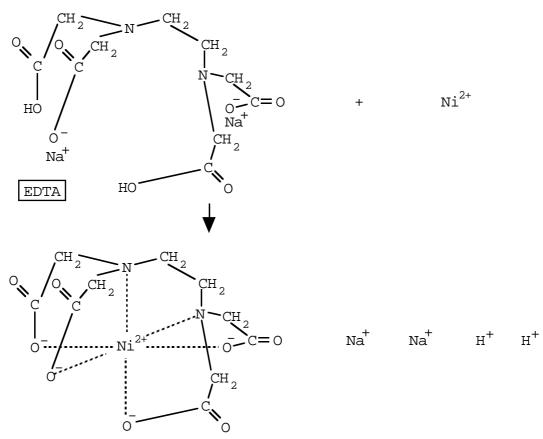
- 1. Fill a burette with the Sodium sulphite solution.
- 2. Pipette 25.00 cm³ 0.02 mol l⁻¹ Potassium tetraoxymanganese(VII) into a conical flask then add 10 cm³ 10 mol l⁻¹ Sulphuric acid.
- 3. Titrate till the purple colour of the tetraoxymanganese(VII) ion is discharged. The reaction is self-indicating.

Calculation of results:


Say the volume of Sodium sulphite required was 24.93 cm³ $5SO_3^{2-}$ + $2MnO_4^{-}$ + $6H^+$ -> $5SO_4^{2-}$ + $2Mn^{2+}$ + $3H_2O_4^{-}$ No.of m.mols MnO_4^{-} = 25.00 x 0.02 = 0.5 m.mols => No.of m.mols SO_3^{2-} in 24.93 cm³ = 2.5 x 0.5 = 1.25 m.mols => Molarity = $no.of m.mols = \frac{1.25}{24.93} = \frac{0.05 \text{ mol } 1^{-1}}{1}$

Complexometric Titration

Object : To determine the percentage of Nickel in a Nickel(II) salt by titration with 0.1 mol 1⁻¹ EthyleneDiamineTetraAcetic acid (EDTA)


Method :

- 1. Fill a burette with 0.1 mol 1^{-1} EDTA.
- 2. Weigh out accurately, in a weighing bottle, about 2.50g of the Nickel(II) salt.
- 3. Transfer the Nickel(II) salt to a 100 cm³ volumetric flask and make up the volume of the solution to 100 cm³ with water.
- 4. Pipette 25.00 cm³ of this solution into a conical flask.
- 5. Add Murexide indicator to the Nickel(II) solution in the conical flask. The indicator forms an unstable yellow complex with Nickel(II) ions :

yellow complex

7. Titrate the EDTA solution into the Ni²⁺ solution. The EDTA reacts with the Ni²⁺ ions in a 1:1 ratio :

Notice that H^+ ions are produced. If these ions were allowed to build up in solution the reaction would begin to reverse. Addition of about 10 cm³ 0.88 Ammonia just prior to the end point removes these H^+ ions.

8. Towards the end point the EDTA begins to attack the few remaining Nickel(II) ions which are present in the unstable yellow 'Murexide-Nickel(II)' complex leading to the break down of this complex and the reforming of the purple Murexide indicator. The colour changes from yellow to purple at the end point.

Calculation of results

Say the volume of 0.1 mol 1^{-1} EDTA required was 40.49 $\rm cm^3$ and the weight of Nickel(II) salt was 2.51g.

	No. of m.mols of EDTA = 0.1×40.49	=	4.049 m.mols
\Rightarrow	No. of m.mols of Ni ²⁺ in 25 cm^3	=	4.049 m.mols
\Rightarrow	No. of m.mols of Ni $^{2+}$ in 100 cm 3	=	4.049 x 4
		=	16.196 m.mols
\Rightarrow	No. of m.mols of Ni ²⁺ in 2.51g Ni ²⁺ salt	=	16.196 m.mols
\Rightarrow	No. of moles of Ni ²⁺ in 2.51g Ni ²⁺ salt	=	0.016196 moles
\Rightarrow	Weight of Ni ²⁺ in 2.51g Ni ²⁺ salt	=	0.016196 x 59
		=	0.956g
\Rightarrow	Percentage of Nickel in Nickel(II) salt	=	<u>0.956 x 100</u>
			2.51
		=	38.09 %

ADVANCED HIGHER

Gravimetric Analysis

Object : To determine the number of moles of water of crystallisation in 1 mole of hydrated Barium chloride BaCl₂.xH₂O

Method :

- 1. Weigh out, in a crucible, 2-3g hydrated Barium chloride.
- 2. Heat the hydrated Barium chloride in the crucible for about 10 minutes. This drives off the water of crystallisation to form anhydrous Barium chloride BaCl₂:

 $BaCl_2.xH_2O$ -> $BaCl_2$ + xH_2O

- 3. Allow the crucible and contents to cool and reweigh.
- 4. Continue to heat until there is no further loss in mass. This is called 'heating to constant mass'

Calculation of results

Say mass of hydrated Barium chloride was 2.8092g and mass of anhydrous Barium chloride was 2.3955g.

	No. of moles of anhydrous Barium chloride=	$\frac{2.3955}{208.3}$
	=	0.0115 moles
\Rightarrow	Weight of Water removed by heating =	2.8092 - 2.3955
	=	0.4137g
⇒	No. of moles of Water removed =	$\frac{0.4137}{18}$
	=	0.0230 mol

Hence 0.0115 mol Barium chloride are combined with 0.0230 mol Water Hence 1 mol Barium chloride is combined with 2 mol Water Hence the formula is BaCl₂.2H₂O