The Mole in Unit 1

1 gram of Hydrogen contains 6.02 x 1023 Hydrogen atoms

We call this number 'the mole'. We say that ' 1 gram of Hydrogen contains 1 mole of Hydrogen atoms'.

1 mole of Hydrogen atoms weighs 1 gram.

=> 2 moles of Hydrogen atoms weigh 2 grams etc

Since the mass of a Hydrogen atom is 1 amu and the mass of an Oxygen atom is 16 amu, Oxygen atoms are 16 times heavier than Hydrogen atoms.

1 mole of Oxygen atoms therefore weighs 16g - the relative atomic mass in grams.

The mass of 1 mole of a substance is known as 'the gram formula mass' and is obtained by adding the relative atomic masses of all the atoms present in the formula.

1 mole of H_2O molecules weighs (2 x 1) + (1 x 16) = 18g

i.e. the gram formula mass of H₂O is 18g

Here are some other gram formula masses. See if you can work them out:

Substance	Formula Mass/g
$egin{array}{c} N_2 \ HBr \ SO_2 \ C_6 H_{12}O_6 \end{array}$	28 81 64 180
HBr SO ₂ C ₆ H ₁₂ O ₆	81 64 180

<u>Problem 1</u>

Calculate the number of moles of SO_2 in 320g of SO_2 .

<u>Answer</u>

	Number	of	moles	of	SO2	in	64g	=	1
=>	Number	of	moles	of	SO2	in	320g	=	<u>320</u> 64
								=	5 moles

1

INTERMEDIATE 2
Problem 2

Calculate the mass of 0.5 moles of Ethane, C_2H_6 .

Answer

	Mass	of	1 mc	ole of	Etł	lane	=	30g	
=>	Mass	of	0.5	moles	of	Ethane	=	30 :	x 0.5
							=	<u>15g</u>	

<u>Problem 3</u>

Calculate the mass of Water formed on burning 88g of Propane, $\rm C_3H_8, given the equation:$

 C_3H_8 + O_2 -> CO_2 + H_2O

<u>Answer</u>

First balance the equation:

C ₃ H ₈	+	50 ₂	->	3CO ₂	+	4H ₂ O
1 mole						4 moles
44g						72g
669						<u>72 x 66</u> 44
						= <u>108q</u>

Problem 4

Calculate the mass of Hydrogen required to produce 64g of Methanol, $\rm CH_3OH,$ given the equation:

CO + H_2 -> CH_3OH

<u>Answer</u>

First balance the equation:

CO

+
$$2H_2$$
 -> CH_3OH
2 moles 1 mole
4g 32g
 $\frac{4 \times 64}{32}$ 64g
= $\underline{8g}$