Topic EX2: The Mole

Revised July 1995

1 Atomic Mass Unit (amu) is the weight of a proton or neutron.

THE MOLE IS THE NUMBER OF AMU'S IN 1g

1 amu weighs 1.66 x 10^{-24} g

no. of amu's in 1g = $\frac{1}{1.66 \times 10^{-24}}$ = 6.023×10^{23} = $\frac{1}{1.001}$

1 mole of amu's weighs 1g

i.e. Weight of 1 mole of protons = weight of 1 mole of neutrons = 1g

Examples of calculations involving the mole

Example 1

- Q. Write down the weight of 1 mole of Magnesium Mg

Example 2

- Q. Calculate the weight of 1 mole of Chlorine Cl₂
- **A.** 1 molecule of Cl_2 contains 2 Cl atoms

Weight of 1 molecule of
$$Cl_2$$
 = 2 x 35.5 = 71 amu 1 mole = 71 g

The weight of 1 mole of molecules is called the Gram Formula Mass, usually called the $Formula\ Weight$.

The formula weight of Chlorine is 71 g.

Example 3

- Q. Calculate the weight of 1 mole of Water H_2O
- **A.** Weight of 1 mole of $H_2O = (2 \times 1) + 16 = 18 \text{ g}$

Example 4

Q. Calculate the weight of 2 moles of Sodium sulphate

A. Weight of 1 mole of
$$(Na^+)_2SO_4^{2-} = (2 \times 23) + 32 + (4 \times 16)$$

= 142 g
... .. 2 = 284 g

Example 5

Q. Calculate the number of moles of Carbon dioxide in 11 g

A. Weight of 1 mole of
$$CO_2$$
 = 12 + (2 x 16) = 44 g no. of moles of CO_2 in 11 g = $\frac{11}{44}$ = $\frac{0.25 \text{ mol}}{44}$

Example 6

Q. Calculate the number of moles of Aluminium nitrate in 42.6 g

A. Weight of 1 mole of
$$Al^{3+}(NO_{3}^{-})_{3} = 27 + (3 \times 14) + (9 \times 16)$$

$$= 213 g$$
no. of moles in 42.6 g
$$= 42.6 = 0.2 \text{ mol}$$

$$213$$

Example 7

Q. Calculate the weight of Calcium oxide and Carbon dioxide produced on heating 5 g of Calcium carbonate given the equation:

A.
$$Ca^{2+}CO_{3}^{2-}$$
 -> $Ca^{2+}O^{2-}$ + CO_{2}

5 g ? wt ? wt

1 mol 1 mol 1 mol

100 g 56 g 44 g

5 g $\frac{56 \times 5}{100}$ $\frac{44 \times 5}{100}$

Example 8

Q. Calculate the weight of Sodium required to produce 4 g of Hydrogen by reaction with Water.

 $\text{Na} + \text{H}_2\text{O} -> \text{Na+OH-} + \text{H}_2$

A. First balance the equation :

2 Na + **2** H_2O -> **2** Na^+OH^- + H_2

? wt 4 g

2 mol 1 mol

46 g 2 g

<u>92 g</u> 4 g

Example 9

- Q. 2.0 g Magnesium oxide contain 1.2 g Magnesium. Find the empirical (simplest) formula of the Magnesium oxide.
- **A.** Wt. of Oxygen in the Magnesium oxide = 2.0 1.2

= 0.8 g

No. of moles Mg = $\frac{1.2}{24}$ = 0.05 mol

No. of moles 0 = $\frac{0.8}{16}$ = 0.05 mol

0.05 mol Mg are combined with 0.05 mol O

1 mol Mg is ... 1 mol O

Simplest formula is \underline{MgO} (or $\underline{Mg^{2+O^{2-}}}$)

Ratio

2

1

Example 10

Q (a) An organic compound contains:

40.00 % Carbon 6.67 % Hydrogen 53.33 % Oxygen

Calculate its empirical formula.

- (b) Its formula weight (weight of 1 mole) is 60 g. Deduce its molecular formula.
- A (a) Take 100 g of the compound

Wt. of Carbon = 40.00 gWt. of Hydrogen = 6.67 gWt. of Oxygen = 53.33 g

No. of moles of Carbon = $\frac{40.00}{12}$ = 3.33 mol

No. of moles of Hydrogen = $\frac{6.67}{1}$ = 6.67 mol

No. of moles of Oxygen = $\frac{53.33}{16}$ = 3.33 mol

Simplest formula is CH₂O

(b) Wt. of 1 mole of CH_2O = 30 g

Molecular formula is $C_2H_4O_2$ (Wt. of 1 mole is 60 g)

Example 11

Q. Calculate the percentage, by weight, of Nitrogen in Ammonium nitrate.

A. Wt. of 1 mole
$$NH_4 + NO_3 - = 14 + (4 \times 1) + 14 + (3 \times 16)$$

= 80g

1 mole $\mathrm{NH_4^+NO_3^-}$ contains 2 moles N

2 moles N weigh 28 g

$$\% N = 28 \times 100 = 35 \%$$

Molar Solutions

A solution's molarity or concentration is the number of moles of dissolved substance per 1000 cm³ of solution e.g.

A 2M solution of Sodium chloride contains 2 moles of Sodium chloride in every 1000 cm^3 of solution.

1000 $\rm cm^3$ of this solution would be prepared by first dissolving 2 moles of Sodium chloride (117 g) in a little Water and then making up the volume to 1000 $\rm cm^3$ in a volumetric flask.

Example 12

- ${\bf Q}$. Calculate the number of moles of Sodium chloride in 25 cm³ of a 5M solution.
- A. No. of moles of Sodium chloride in $1000 \text{ cm}^3 = 5 \text{ mol}$

..
$$25 \text{ cm}^3 = \frac{5 \times 25}{1000}$$

= 0.125 mol

In general

No. of moles =
$$\underline{MV}$$

1000

Example 13

- Q. Calculate the weight of Glucose present in $200 \text{ cm}^3 3M \text{ solution}$.
- **A.** No. of moles = $\frac{MV}{1000}$ = $\frac{3 \times 200}{1000}$ = 0.6 mol

Wt. of 1 mole
$$C_6H_{12}O_6 = 180 g$$

.. .. 0.6 =
$$180 \times 0.6 = 108 \text{ g}$$

Example 14

 \mathbf{Q} . 20 cm³ 2.5M Hydrochloric acid were required to neutralise 30 cm³ Sodium hydroxide.

Calculate the molarity of the Sodium hydroxide solution.

$$A$$
. H^+Cl^- + Na^+OH^- -> Na^+Cl^- + H_2O

No. of moles
$$H^+Cl^- = \frac{MV}{1000}$$

$$= \frac{2.5 \times 20}{1000}$$

$$= 0.05 \text{ mol}$$

No. of moles
$$Na^+OH^- = 0.05 \text{ mol}$$

$$\frac{MV}{1000} = 0.05$$

$$M = \underbrace{0.05 \times 1000}_{V}$$

$$= \frac{0.05 \times 1000}{30}$$